OCR Maths M2

Topic Questions from Papers
 Energy, Work and Power

Answers

1	(i)	$1 / 2.700 .20^{2}$ or $1 / 2.700 .15^{2}$	B1		either K.E.	
		$700 \times 9.8 \times 400 \sin 5^{\circ}$	B1		correct P.E.	
		$\begin{aligned} & 1 / 2.700 .15^{2}+700.9 .8 .400 \sin 5^{\circ}= \\ & 1 / 2.700 .20^{2}+\text { W.D. } \end{aligned}$	M1		for 4 terms with W.D.	
		W.D. $=178,000 \mathrm{~J}$	A1	4	or 178 kJ	
	(ii)	$\mathrm{D}=200+700.9 .8 \sin 5^{\circ}$	M1			
		$\mathrm{D}=798 \mathrm{~N}$	A1		may be implied	
		$\mathrm{P}=\mathrm{Dx} 15=12,000=12 \mathrm{~kW}$	A1	3	AG (11,968W)	
	(iii)	$\mathrm{D}^{\prime}=11,968 \div 20=598$	M1			
		D'-700.9.8sin $5^{\circ}-200=700 \mathrm{a}$	M1			
		$\mathrm{a}=0.285 \mathrm{~ms}^{-2} \quad(\pm)$	A1	3	allow 0.283 (from 12kW)	10
		Alternative for false assumption			of constant acceleration	
	(i)	$\mathrm{D}-700 \times 9.8 \sin 5^{\circ}=700 \mathrm{a} \text { and }$ $15^{2}=20^{2}+2 \mathrm{a} .400$	M1		($\mathrm{D}=445, \mathrm{a}=-0.21875$)	
		W.D. $=400 \mathrm{xD}=178,000$	A1		2 marks (out of 4) maximum	

(Q6, June 2005)

2	(i)a	100 J	B1	1		
	b	7500 Nm	B1	1		
	(ii)	$\begin{aligned} & 400 \cos \alpha \times 25=7500+100 \\ & \int_{\text {for }}=\mathrm{a}+\mathrm{b} \end{aligned}$	M1		sc N II gets M1A1only.This M1 for total M ($\mathrm{a}=0.08$) \&A1 for α	
			Al/			
		$\alpha=40.5$	A1	3	or 0.707 rads	5

(Q3, Jan 2006)

3	(i)	$\mathrm{F}=300 / 12$	M1			
		$\mathrm{R}=25$	A1	2		
	(ii)	$\mathrm{P}=17.5 \times 12 \quad\left(\mathrm{R}_{2}=17.5 \& \mathrm{~F}_{2}=17.5\right)$	M1		n.b. B1 only for 210 W	
		$\mathrm{P}=210 \mathrm{~W}$	A1	2	without working	
	(iii)	$500=\mathrm{Fx} 12$	M1			
		$\mathrm{F}=41.67$ or 500/12 aef	A1			
		$41.67-25-75 \times 9.8 \sin 1^{\circ}=75 \mathrm{a}$	M1			
			A1			
		$0.0512 \mathrm{~ms}^{-2}$	A1	5	or 0.051	
	(iv)	$\mathrm{PE}=75 \times 9.8 \times 200 \sin 10^{\circ} \quad(25530)$	B1		OR $75 \times 9.8 \sin 10^{\circ}-120=75 \mathrm{a}$	
		$\mathrm{WD}=200 \mathrm{x} 120$	B1		$(\mathrm{M} 1+\mathrm{A} 1)$	
		$1 / 2.75 \mathrm{v}^{2}=$	M1		$\mathrm{a}=0.102 \quad$ (A1)	
		$1 / 2.75 .13^{2}+75 \times 9.8 \times 200 \sin 10^{\circ}-200.120$	A1		$\mathrm{v}^{2}=169+2 \mathrm{x} 0.102 \times 200$ (M1)	
		$14.5 \mathrm{~ms}^{-1}$	A1	5	$\mathrm{v}=14.5$	14

(Q7, Jan 2006)

(Q4, June 2006)

$\mathbf{6}$	(i)	$1 / 2 \times 80 \times 5^{2}$ or $1 / 2 \times 80 \times 2^{2}$ either KE	B1		$1000 / 160$	
		70×25	B1		1750	
		$80 \times 9.8 \times 25 \sin 20^{\circ}$	B1		6703.6	
		$\mathrm{WD}=1 / 2 \times 80 \times 5^{2}-1 / 2 \times 80 \times 2^{2}+70 \times 25+80 \times 9.8 \times 25 \sin 20^{\circ}$	M1		4 parts	
	9290	A1	5			
	(ii)	Pcos $30^{\circ} \times 25$	B1		or $\mathrm{a}=0.42$	
		Pcos $30^{\circ} .25=9290 /$ Pcos $30^{\circ}-70-80 \times 9.8 \sin 20^{\circ}=80 \mathrm{a}$	M1			
		P $=429 /$ if P found $1^{\text {st }}$ then Pcos $30^{\circ} \times 25=9290$ ok	A1	3		$\mathbf{8}$

(Q4, Jan 2007)

7	(i)	$\mathrm{D}=3000 / 5^{2}=120$	M1			
			A1	2	AG	
	(ii)	$120-75=100 \mathrm{a}$	M1			
		$\mathrm{a}=0.45 \mathrm{~ms}^{-2}$	A1	2		
	(iii)	100x9.8x1/98	B1		weight component	
		$3000 / \mathrm{v}^{2}=3 \mathrm{v}^{2}+100 \times 9.8 \times 1 / 98$	M1			
		$3000=3 \mathrm{v}^{4}+10 \mathrm{v}^{2}$	A1		aef	
		solving quad in v^{2}	M1		($\mathrm{v}^{2}=30$)	
		$\mathrm{v}=5.48 \mathrm{~ms}^{-1}$	A1	5	accept $\sqrt{30}$	9

(Q5, Jan 2007)

$\mathbf{8}$	$40 \cos 35^{\circ}$	B1	
	WD $=40 \cos 35^{\circ} \times 100$	M1	
	3280 J	A1 3	ignore units

(Q1, June 2007)

$\mathbf{9 (i)}$	$\mathrm{WD}=1 / 2 \times 250 \times 150^{2}-1 / 2 \times 250 \times 100^{2}$	M 1	
	1560000	A1	1562500
	$450000=1560000 / \mathrm{t}$	M1	
	3.47	A1 4	
(ii)	$\mathrm{F}=450000 / 120$	M1	
	3750	A1	
	$3750=250 \mathrm{a}$	M1	
	$15 \mathrm{~ms}^{-2}$	A1 4	

10 (i)	$1 / 2.70 .4^{2}$	M1		
	560 J	A1 2		
(ii)	$70 \times 9.8 \times 6$	M1		
	4120	A1 2	4116	
(iii)	60d	B1		
	$8000=560+4120+60 \mathrm{~d}$	M1	4 terms	
		A1 $\sqrt{\prime}$	\boldsymbol{f} their KE and PE	
	55.4 m	A1 4		8

(Q5, June 2007)

11	$\mathrm{~F}=0.2 \mathrm{mg} \cos 30^{\circ}$	M1	$=$	
		A1	$=(1.6974 \mathrm{~m})(49 \sqrt{3} / 50 \mathrm{~m})$	
	$0.2 \mathrm{mgcos} 30^{\circ} \mathrm{xd}$	B1	$\mathrm{a}=0.2 \mathrm{~g} \cos 30^{\circ}+\mathrm{g} \sin 30^{\circ}$	
$\mathrm{mgxdx} \mathrm{\sin 30}^{\circ}$	B1	$\mathrm{a}=(\pm) 6.60$		
	$\mathrm{d}=1 / 2 \mathrm{x} 25 /\left(0.2 \mathrm{x} 9.8 \cos 30^{\circ}+9.8 \times \sin 30^{\circ}\right)$ 1.89 m	M1	$0=5^{2}-2 \mathrm{x} 6.60 \mathrm{~d}$	$\mathbf{6}$

(Q2, Jan 2008)

$\mathbf{1 2}$ (i)	$45000 / \mathrm{v}=\mathrm{kv}$ $\mathrm{k}=50$	M1 A1 2	AG
(ii)	$45000 / 20-50 \times 20=1200 \mathrm{a}$	M1	
	$\mathrm{a}=1.04 \mathrm{~m} \mathrm{~s}^{-2}$	A1	
(iii)	$\mathrm{P} / 15=50 \times 15+1200 \times 9.8 \sin 10^{\circ}$	M1 3	
	41900 W	A1	
	A1 3		

(Q4, Jan 2008)

(Q1, June 2008)

14	$0.03 \mathrm{R}=1 / 2 \times 0.009\left(250^{2}-150^{2}\right)$	M 1	$150^{2}=250^{2}+2 \mathrm{a} \times 0.03$		
	0.03 R	B 1	$\mathrm{a}= \pm 2 \times 10^{6} / 3$ or $\pm 666,667$	(A1)	
	either K.E.	B1	$\mathrm{F}=0.009 \mathrm{a}$	(M1)	
	$\mathrm{R}=6000 \mathrm{~N}$	$\mathrm{Al} \boldsymbol{f}$	\boldsymbol{u} unit errors		

(Q2, June 2008)

15 (i)	$\mathrm{D}=12000 / 20$	B1	
	$\begin{aligned} & 12000 / 20=\mathrm{k} \mathrm{x} 20+600 \times 9.8 \times 0.1 \\ & \mathrm{k}=0.6 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 3 \end{array}$	AG
(ii)	$16000 / \mathrm{v}=0.6 \mathrm{v}+600 \times 9.8 \times 0.1$	M1	
	$0.6 \mathrm{v}^{2}+588 \mathrm{v}-16000=0$	M1	attempt to solve quad. (3 terms)
	$\mathrm{v}=26.5 \mathrm{~m} \mathrm{~s}^{-1}$	A1 3	
(iii)	$16000 / 32-0.6 \times 32=600 \mathrm{a}$	M1	
		A1	
	$\mathrm{a}=0.801 \mathrm{~m} \mathrm{~s}^{-2}$	A1 3	0.80 or 0.8 9

(Q3, June 2008)

16 (i)	$P / 10-800 \times 9.8 \sin 12^{\circ}-100 k=800 \times 0.25$	M1	$\mathrm{P} / 10=\mathrm{D}_{1}$ ok
		A1	D_{1} ok
	$P / 20-400 k=800 \times 0.75$	M1	$\mathrm{P} / 20=\mathrm{D}_{2}$ ok
		A1	$\mathrm{D}_{1}=2 \mathrm{D}_{2}$ needed for this A1
	solving above	M1	
	$k=0.900$	A1	AG 0.9000395
	$P=19200$	A1 7	or 19.2 kW (maybe in part (ii))
(ii)	$0.9 v^{2}=28800 / v$	M1	ok if 19200/v
	solving above	M1 *	$\left(v^{3}=32000\right)$
	$v=31.7 \mathrm{~m} \mathrm{~s}^{-1}$	A1 3	10

(Q4, Jan 2009)

17	$\begin{aligned} & 1 / 2 \times 75 \times 12^{2} \text { or } 1 / 2 \times 75 \times 3^{2}(\text { either KE }) \\ & 75 \times 9.8 \times 40 \\ & R \times 180(\text { change in energy }=24337) \\ & 1 / 2 \times 75 \times 12^{2}=1 / 2 \times 75 \times 3^{2}+75 \times 9.8 \times 40-R \times 180 \\ & R=135 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 $12^{2}=3^{2}+2 a \times 180$ A1 $a=0.375(3 / 8)$ M1 $75 \times 9.8 \times \sin \theta-R=75 a$ A1 $R=135$ (max 4 for no energy)	5

(Q1, June 2009)

$\mathbf{1 8}$ (i)	$R=F=P / v=44000 / v=1400$ $v=31.4 \mathrm{~m} \mathrm{~s}^{-1}$	M1	
A1 2			
(ii)	$44000 / v=1400+1100 \times 9.8 \times 0.05$	M1	must have g
	$v=22.7 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
A1 3			
(iii)	$22000 / 10+1100 \times 9.8 \times 0.05-1400$ M1 $=1100 a$ $a=1.22 \mathrm{~m} \mathrm{~s}^{-2}$		

(Q2, June 2009)

| 19 | $75 \times 9.8 \times 40$ | B1 | | Average Speed $=40 \div 120$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $(75 \times 9.8 \times 40) \div 120$ | M1 | | | |
| $(75 \times 9.8) \times($ Average speed $)$ | | | | |
| 245 W | A1 | $[3]$ | | 3 |

20 (i)	$\mathrm{D}-400=700 \times 0.5$ $\mathrm{D}=750 \mathrm{~N}$	M1 A1 \quad [2]	3 terms	
(ii)	$\mathrm{P}=750 \times 12$ 9000 W or 9 kW	M1 A1ft [2]		
(iii)	$\mathrm{P} / 35=400$ 14000 W or 14 kW	M1 A1	$[2]$	
(iv)	$\mathrm{D}=14000 / 12$ $3500 / 3=400+700 \times 9.8 \sin \theta$	B1 ft M1 A1 A1	[4]	May be implied 3 terms Their P/12

(Q4, Jan 2010)

21 (i)	$\begin{aligned} & \mathrm{D}=128000 / 80(=1600) \\ & \mathrm{k}(80)^{2}=128000 / 80 \\ & \mathrm{k}=1 / 4 \\ & \mathrm{R}=900 \mathrm{~N} \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { B1 } & \mathbf{5} \end{array}$	Driving force $=$ resistance FT on their $k(R=3600 \mathrm{k})$
(ii)	$\begin{aligned} & \mathrm{D}=128000 / 60(=21331 / 3) \\ & 2000 \times 9.8 \times \sin 2^{\circ} \\ & 6400 / 3-900-2000 \times 9.8 \times \sin 2^{\circ}=2000 \mathrm{a} \\ & \mathrm{a}=0.275 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	B1 B1 M1 A1 4	4 terms required 9

(Q3, June 2010)

23	(i)	$\begin{aligned} & \left(\mathrm{k} 25^{3 / 2}\right) \times 25=15000 \\ & \mathrm{k}=4.8 \end{aligned}$	M1 A1 A1 [3]	Tractive force \times speed = power
	(ii)	$\begin{aligned} & \mathrm{R}=4.8 \times 16^{3 / 2} \\ & \mathrm{~T}-4.8 \times 16^{3 / 2}+700 \mathrm{~g} \times 1 / 15=700 \times 0.3 \\ & \mathrm{P}=59.9 \times 16 \\ & \mathrm{P}=958 \mathrm{~W} \end{aligned}$	B1 M1 A1 M1 A1 [5]	307.2 N2L, 4 terms to find tractive force (T) Allow cv(R), R not 600; ($\mathrm{T}=59.866$..) 16xTractive force

(Q2, Jan 2011)

24	(i)		$\begin{aligned} & W D=100 \cos 20 \times 30 \\ & W D=2820 \mathrm{~J} \end{aligned}$	M1 A1 [2]	Product of 3 relevant elements. Angle could be 5, 25 or complements 2819.1...
	(ii)		$\begin{aligned} & \mathrm{PE}=25 \mathrm{~g} \times 30 \sin 5 \\ & \mathrm{PE}=641 \end{aligned}$	M1 A1 [2]	Product of weight and vertical height. Allow without g 640.6
	(iii)	OR	$\begin{aligned} & 2819.1=640.6 \\ & +30 \times 70+25 \mathrm{v}^{2} / 2 \\ & \mathrm{v}=2.51 \mathrm{~ms}^{-1} \\ & 25 a=100 \cos 20-70-25 \mathrm{~g} \sin 5 \\ & a=0.105 \\ & v^{2}=2 \times 30 \times \text { ' } a \text { ' } \\ & v=2.51 \end{aligned}$	A1ft A1 A1 [4] *M1 A1 dep*M1 A1 [4]	4 term energy equation $\mathrm{ft}(\mathrm{cv} 2820$ and cv 641) cao 4 term equation Allow 0.1 here Or equivalent complete method cao

(Q4, Jan 2011)

25 i	$\begin{aligned} & \mathrm{PE}=70 \times 3 \mathrm{~g} \\ & \mathrm{KE} \text { change }=70 \times\left(2.1^{2}-1.4^{2}\right) / 2 \\ & \mathrm{PE} \text { change }+\mathrm{KE} \text { change } \\ & 2143.75 \mathrm{~J} \end{aligned}$	B1 B1 M1 A1 [4]	$\begin{aligned} & 2058 \\ & 85.75 \\ & \text { Must include evaluation } \\ & \text { Accept 2140. Allow all values to be negative. } \end{aligned}$
ii OR	$\begin{aligned} & 20(90+\mathrm{T})=2143.75 \\ & \mathrm{~T}=17.1875 \mathrm{~N} \\ & \\ & 70 \mathrm{~g} .0 .15-90-\mathrm{T}=70 .(-0.06125) \\ & \mathrm{T}=17.1875 \mathrm{~N} \end{aligned}$	M1 A1ft A1 [3] M1 A1 A1 [3]	Work done = Energy change used $\mathrm{ft}(\mathrm{cv}(2143.75))$ accept 17.2 Use of $v^{2}=u^{2}+2$ as to find a AND use of N2 law(4 terms) accept 17.2

(Q1, June 2011)

26 i	$21000 / 25$	B1 M1	Use of force $=$ power/speed 3 terms cv(21000/25 $)$
	$0=21000 / 25-25 \mathrm{k}-1250 \mathrm{gsin} 2$ $\mathrm{k}=16.5$	A1 A1 ii	
	$21000 / \mathrm{v}=16.5 \mathrm{v}$ $\mathrm{v}=35.7 \mathrm{~ms}^{-1}$	M1 A1 ft A1 $[3]$	ft on cv(k)

27	(i)	$\begin{aligned} & 25000 / 10 \\ & 1500 g \sin 5 \\ & 2500-750-1500 g \sin 5=1500 a \\ & a=0.313 \end{aligned}$	B1 B1 M1 A1 A1 [5]	1281.1 Attempt at N2L with 4 terms. $\operatorname{cv}(1500 g \sin 5) ; \operatorname{cv}(2500)$ not 25000 . Allow 0.31
	(ii)	```WD against resistance \(=750 \mathrm{~d}\) WD by engine \(=25000 \times 28(=700000)\) Change in PE \(=1500 \mathrm{~g} \times \mathrm{d} \sin 5\) Change in KE \(= \pm 1 / 2 \times 1500 \times\left(20^{2}-10^{2}\right)\) \(25000 \times 28=1 / 2 \times 1500 \times\left(20^{2}-10^{2}\right)+750 d+1500 g\) \(\times d \sin 5\) \(d=234\)```	B1 B1 B1 B1 M1 A1 A1 [7]	750h/sin5 $1500 g \times h$ Use of correct formula for KE. Use conservation of energy, at least 3 used including WD by engine.

(Q5, Jan 2012)

28 (i)	Driving Force $=20000 / 20(=1000)$ $\begin{aligned} & 20000 / 20-800=1600 a \\ & a=0.125 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Attempt at N2L with 3 terms. Signs may not be correct at this stage. Using their 20000/20, but not 20000 Allow $\frac{1}{8}$
(ii)	20000/v $\begin{aligned} & \mathrm{DF}-800-1600 g \sin 4=0 \\ & v=10.6 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	3 terms with attempt at resolving weight; g can be omitted at this stage; if $\mathrm{F}=\ldots$. then $\mathrm{F}=0$ somewhere to award M aef

(Q2, June 2012)

29 (i)	$\begin{aligned} & 18 \cos 15 \times 6 \\ & 104 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Force component x distance
(ii)	$\begin{aligned} & 18 \cos 15 \times 6 / 5 \text { or ans }(\mathrm{i}) / 5 \\ & 20.9 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Force component x distance/5 Allow 20.8

(Q1, Jan 2013)

30	(i)	$\begin{aligned} & \mathrm{DF}=15000 / 15 \\ & \mathrm{DF}-k \times 15^{1 / 2}=1500 \times 0.4 \\ & k=103 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	N2L, 3 terms and attempt at DF. Numerical DF Allow ${ }^{80 \sqrt{15} / 3}$	
	(ii)	$\begin{aligned} & \mathrm{P} / 30=k 30^{1 / 2} \\ & \mathrm{P}=17000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \\ & {[3]} \end{aligned}$	Using cv(k) Allow 17(.0)kW, 16900W, $16.9 \mathrm{~kW}, 12000 \sqrt{ } 2 \mathrm{~W}$	

\begin{tabular}{|c|c|c|c|c|c|}
\hline 31 \& (i) \& \[
\begin{aligned}
\& \text { Use } \mathrm{I}=\mathrm{mv} \\
\& 3.6 \mathrm{~ms}^{-1}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& {[2]}
\end{aligned}
\] \& -3.6 gets A0 \& \\
\hline \& (ii) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \pm\left(1 / 2 \times 0.5 \times 3.6^{2}-1 / 2 \times 0.5 \times \mathrm{v}^{2}\right) \\
\& 0.5 \times \mathrm{g} \mathrm{x} 0.3
\end{aligned}
\] \\
Use of conservation of energy
\[
\mathrm{v}=2.66 \mathrm{~ms}^{-1}
\]
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& {[4]} \\
\& \hline
\end{aligned}
\] \& Three terms \& \\
\hline \& OR \& \[
\begin{aligned}
\& \mathrm{a}=-\mathrm{g} \sin \theta \\
\& \mathrm{~s}=0.3 / \sin \theta \\
\& \text { Use } \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \\
\& \mathrm{v}=2.66 \mathrm{~ms}^{-1}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \(\theta\) angle of plane to horizontal
\[
\mathrm{a} \neq-\mathrm{g}, \mathrm{~s} \neq 0.3 .
\] \& \\
\hline \& (iii)

OR \& $$
\begin{aligned}
& \text { Change in energy }= \pm\left(1 / 2 \times 0.5 \times 3^{2}-0.5 \times \mathrm{x} \mathrm{x}\right. \\
& 0.2) \\
& \text { Equate to force } \mathrm{x} \text { distance } \\
& 3.175 \mathrm{~N} \\
& \\
& \\
& \text { Using } \mathrm{v}^{2}=\mathrm{u}^{2}+2 \text { as to find a } \\
& \text { Resolve parallel to plane } \\
& 0.5 \mathrm{gcos} 60+\mathrm{F}=0.5 \mathrm{xcv}(11.25) \\
& \mathrm{F}=3.175
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& {[4]} \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | Difference of KE and PE |
| :--- |
| Attempt at $0.2 / \sin 30$ for dist, 3 terms |
| Allow 3.18 |
| Use $\mathrm{v}=0$, attempt at $\mathrm{s}=0.2 / \sin 30$ N2L used with cv(11.25), 3 terms Consistent signs Allow 3.18 | \&

\hline
\end{tabular}

(Q6, Jan 2013)

32		(i)	$\begin{aligned} & 0.75 \times g \times 8 \\ & 58.8 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Weight \times distance Allow -58.8
		(ii)	$\begin{aligned} & +/-\left(1 / 2 \times 0.75 \times v^{2}-1 / 2 \times 0.75 \times 2^{2}\right) \\ & 1 / 2 \times 0.75 \times v^{2}-1 / 2 \times 0.75 \times 2^{2}=58.8 \\ & v=12.7 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{gathered} \text { *M1 } \\ \text { A1 } \\ \text { dep*M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	Attempt at change in KE Equate their change in KE to their PE from (i)
	OR	(ii)	$\begin{aligned} & a=g \sin \theta \\ & s=8 / \sin \theta \\ & v^{2}=2^{2}+2 \times g \sin \theta \times 8 / \sin \theta \\ & v=12.7 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \\ & \hline \end{aligned}$	θ is angle of slope to horizontal. Not $a=g, \operatorname{not} s=8$

(Q1, June 2013)

33	(i)	$\begin{aligned} & 20000 / 32 \\ & R=20000 / 32 \\ & R=625 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	cao
	(ii)	$\begin{aligned} & F+1500 g \sin 2-625=1500 \times 0.1 \\ & \text { Power }=32 \times F \\ & \text { Power }=8380 \mathrm{~W} \text { or } 8.38 \mathrm{~kW} \end{aligned}$	M1 Alft M1 A1 [4]	Using Newton 2, all forces used. ft their R from (i) SC $F-1500 g \sin 2-625=1500 \times 0.1$ Using their F. $8383.27 \ldots . \text { SC } 41200 \mathrm{~W} \text { or } 41.2 \mathrm{~kW}(41216.7 \ldots)$

(Q2, June 2013)

